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Abstract
We construct a family of quasigraded Lie algebras that coincide with the
deformations of the loop algebras in ‘principal’ gradation and admit Kostant–
Adler–Symes scheme. Using the constructed algebras we obtain integrable
‘magnetic’ deformation of the ordinary open and closed Toda chains for all
series of classical matrix Lie algebras.

PACS numbers: 02.20.Sv, 02.20.Tw, 02.30.Ik

1. Introduction

It is known that integrability of the majority of integrable Hamiltonian systems is based on
the Lie algebras with special properties [5]. In particular, integrability of the open Toda
chains [1–3] is based on the classical simple Lie algebras; integrability of the closed Toda
chains [3] is based on the loop algebras in principal gradation [4, 5]. The main property of
the classical simple Lie algebras and loop algebras that permit their usage in the theory of
integrable systems is their property to be decomposable into direct sum of two subalgebras
(the so-called Kostant–Adler–Symes scheme) [5].

In the papers [8, 9], it was shown that a special Lie algebra gE , living on an elliptic curve E ,
also possesses the decomposition gE = g+

E + g
−
E and, hence, admits the Kostant–Adler–Symes

scheme. In our papers [10, 12], we have generalized results of [8, 9] onto the case of special
Lie algebras gH living on the algebraic curve H. In paper [13], we gave a Lie algebraic
explanation of this construction. We have constructed a family of quasigraded Lie algebras g̃A

possessing the decomposition g̃A = g̃+
A + g̃

−
A parametrized by some numerical matrices A, that

may be viewed as quasigraded deformations of loop algebras in a homogeneous gradation,
such that loop algebras themselves correspond to the case A ≡ 0 and quasigraded Lie algebras
gH correspond to the case A ∈ Diag(n). Using g̃A algebras we have obtained some known
and a number of new integrable Hamiltonian systems [14, 15].
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Majority of the integrable Hamiltonian systems obtained in [14, 15] are top-like systems.
In the present paper, we develop our approach to the integrable systems based on quasigraded
Lie algebras in order to show that using our method it is possible to obtain other types
of integrable systems, in particular, integrable multi-particle Toda-type systems. The last
systems are very interesting by themselves, due the fact that there are only few examples of
integrable multi-particle systems known (see [16] for a review). Construction of new types of
such systems may be of great interest for both mathematics and physics.

In order to achieve this goal we combine our previous results [13–15], and ideas of [17]
and define a new type of the quasigraded Lie algebras g̃

pr
A admitting the Kostant–Adler–Symes

scheme and coinciding with deformations of the loop algebras in the principal gradation.
More definitely, it turned out that for the special choice of the matrices A (that depends on the
classical matrix Lie algebras g) it is possible to define ‘principal’ subalgebras g̃

pr
A ⊂ g̃A in the

analogous way as for the case of ordinary loop algebras [4]. In the A → 0 case the algebras
g̃

pr
A coincide with the ordinary loop algebras in the principal gradation.

We study properties of the Lie algebras g̃
pr
A for all the classical matrix Lie algebras g. We

construct their coadjoint representations and an infinite set of their invariants. Following the
standard procedure [5] we introduce the ‘direct-difference’ Lie–Poisson bracket into linear
spaces

(
g̃

pr
A

)∗
. As a result we obtain an infinite number of commuting with respect to the

‘direct-difference’ Lie–Poisson bracket functions on the dual spaces of our algebras. That
permits us to develop the theory of integrable systems based on the Lie algebras g̃

pr
A . We

concentrate our attention on the theory of finite-dimensional Hamiltonian systems connected
with the algebras g̃

pr
A . In order to obtain these systems in the framework of our construction,

we use the fact that the algebras g̃
pr
A are quasigraded. This property permits us to define an

infinite sequence of ideals of finite co-dimensions in the algebra g̃
pr
A equipped with the ‘direct

difference’ bracket. As the result, we obtain a large number of commuting functions on the
dual space of each quotient algebra of a finite dimension; and hence, integrable Hamiltonian
systems in the corresponding quotient spaces.

We consider in details the most interesting Hamiltonian systems in the quotient spaces of
a small quasidegree. Simplest of them coincide with the integrable ‘magnetic’ deformations
of the closed and open Toda chains. The corresponding Hamiltonians differ from the standard
Toda Hamiltonians by an additional potential term and a ‘magnetic’ lengthening of impulses.
They have for the all classical matrix Lie algebras of the rank n the following explicit form:

H = 1

2

n∑
i=1

pi +
∑

αj ∈�
⋃ −�

βA
i,j eαj (q)

2

− 1

2

∑
αj ,αi∈�

⋃−�

γ A
i,j eαi (q) eαj (q) +

∑
αi∈�

⋃ −�

ci eαi (q),

(1)

where � is a system of simple roots of g, � is the longest root, βA
i,j and γ A

i,j are the functions
in the matrix elements of the ‘deformation’ matrix A, q belongs to the Cartan subalgebra:
q = ∑n

i=1 qiHi where Hi ∈ h and pi, qi are the standard coordinates with the canonical
bracket.

The Hamiltonian (1) has the simplest form in the case g = gl(n):

H = 1

2

n∑
i=1

(
pi +

1

2
(ai eqi−qi+1 + ai−1 eqi−1−qi )

)2

− 1

2

n∑
i=1

a2
i e2(qi−qi+1) +

n∑
i=1

ci eqi−qi+1 , (2)

where n + 1 ≡ 1, ci are constants of interaction and ai are the deformation parameters, i.e.
nontrivial matrix elements of the matrix A. In the g = gl(n) case and g = sp(n), constants
ci and ai are independent and arbitrary. In the g = so(n) case they are subjected to some
additional constraints of an algebraic origin. In the cn+1 �= 0 case in the limit ai → 0



Integrable deformation of the Toda chain 9667

Hamiltonians (1) tend to the standard closed Toda chain Hamiltonians of [3]. In the cn+1 = 0
case in the limit ai → 0 Hamiltonians (1) tend to the standard open Toda chain Hamiltonians
of [1].

In the present paper, we also construct Lax pairs and the ‘deformed’ Lax equations that
are equivalent to the Hamiltonian equations of motion of our systems and spectral curves that
correspond to the ‘deformed’ Lax equations.

The structure of the article is as follows: in section 2, we describe a principal grading
of simple (reductive) Lie algebras. In section 3, we construct the corresponding ‘principal’
quasigraded Lie algebras. In section 4, we describe their dual spaces, coadjoint invariants,
Lie–Poisson brackets, Lie–Poisson subspaces and integrable systems of the Euler–Arnold type
on them. At last, in section 5, we obtain integrable deformations of the open and closed Toda
chains.

2. Principal grading of simple Lie algebras

In this subsection, we will introduce necessary notations and remind some important facts
from the theory of semisimple Lie algebras [4]. Let algebra g with the bracket [, ] be simple
(reductive) classical Lie algebra of the rank n. Let h ⊂ g be its Cartan subalgebra, �± be
its set of positive(negative) roots, � be the set of simple roots, Hi ∈ h be the basis of Cartan
subalgebra Eα, α ∈ � corresponding root vectors.

Let us define the so-called ‘principal’ grading of g [4], putting:

deg Hi = 0, deg Eαi
= 1, deg E−αi

= −1.

It is evident that in such a way we obtain grading of g: g = ∑h−1
k=0 gk with the graded

subspaces gk be defined as follows: gk = SpanC{Eα}, where α is the root of the length k,
i.e. α = ∑r

i=1 kiEαi
if α ∈ �+, α = ∑r

i=1 kiE−αi
if α ∈ �− and k = ∑r

i=1 ki, h is the
Coxeter number of g. In particular g0 = h, g1 = SpanC{Eαi

, E−θ |αi ∈ �}, g−1 =
SpanC{E−αi

, Eθ |αi ∈ �} and θ is the longest root of the length h − 1.
Let us consider the following examples of classical matrix Lie algebras.

Example 1. Let us consider the case of g = gl(n) with the basis (Xij )ab = δiaδjb, i, j ∈ 1, n

and the standard commutation relations

[Xij ,Xkl] = δkjXil − δilXkj .

In this case, g1 = SpanC

{
Eαi

≡ Xii+1, E−θ ≡ Xn1|i ∈ 1, n − 1
}
, g0 = SpanC{Hi ≡ Xii |i ∈

1, n}, g−1 = SpanC

{
E−αi

≡ Xi+1,1, Eθ ≡ X1n|i ∈ 1, n−1
}

and the Coxeter number is h = n.

Example 2. Let us consider the case of g = so(2n + 1), where so(2n + 1) = {X ∈
gl(2n + 1)|X = −sX�s} where s = diag(1, s2n), s2n = ( 0 1n

1n 0

)
. In such realization, the

Cartan subalgebra has a basis Hi = Xi+1,i+1 − Xi+n+1,i+n+1, where i = 1, n generators of
algebra that correspond to the simple roots are Eαi

= Xi+1,i+2 − Xn+i+2,n+i+1, i = 1, n − 1,
Eαn

= Xn+1,1 − X1,2n+1, their negative counterparts are E−αi
= Xi+2,i+1 − Xn+i+1,n+i+2, i =

1, n − 1, E−αn
= X1,1+n − X2n+1,1. The longest root corresponds to Eθ = X32+n − X23+n, its

negative counterpart to E−θ = X2+n3 − X3+n2, the Coxeter number h = 2n.

Example 3. Let us consider the case of g = sp(n), where sp(n) = {X ∈ gl(2n)|X =
wX�w}, where w = (

0 1n−1n 0

)
. In such realization, the Cartan subalgebra has a basis

Hi = Xi,i − Xi+n,i+n, where i = 1, n generators of algebra that correspond to the simple
roots are Eαi

= Xi,i+1 − Xn+i+1,n+i , i = 1, n − 1, Eαn
= Xn,2n, their negative counterparts
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are E−αi
= Xi+1,i − Xn+i,n+i+1, i = 1, n − 1, E−αn

= X2n,n. The longest root corresponds to
Eθ = X11+n, its negative counterpart to E−θ = X1+n1, the Coxeter number h = 2n.

Example 4. Let us consider the case of g = so(2n), where so(2n) = {X ∈ gl(2n)|X =
−sX�s}, where s ≡ s2n), s2n = (

0 1n

1n 0

)
. In such realization, the Cartan subalgebra has a basis

Hi = Xi,i − Xi+n,i+n, where i = 1, n generators of algebra that correspond to the simple roots
are Eαi

= Xi,i+1−Xn+i+1,n+i , i = 1, n−1, Eαn
= Xn,2n−1−Xn−1,2n, their negative counterparts

are E−αi
= Xi+1,i − Xn+i,n+i+1, i = 1, n − 1, E−αn

= X2n−1,n − X2n,n−1. The longest root
corresponds to Eθ = X21+n − X12+n, its negative counterpart to E−θ = X1+n2 − X2+n1, the
Coxeter number h = 2n − 2.

3. ‘Principal’ quasigraded Lie algebras

3.1. General case

It is well-known [4] that having the ‘principal’ grading of g it is possible to define the
corresponding grading of loop space. Let g = ∑h−1

k=0 gk be a Z/hZ grading of g. Let us
consider the subspace g̃pr ⊂ g̃, where g̃ ≡ g ⊗ P(λ, λ−1) of the following type:

g̃pr =
⊕
j∈Z

gj ⊗ λj . (3)

Here, j denotes a class of equivalence of the elements j ∈ Z mod hZ. From the fact that
[gi , gj ] ⊂ gi+j it follows that g̃pr is a closed Lie algebra with respect to the ordinary Lie
bracket on the tensor product:

[X ⊗ p(λ), Y ⊗ q(λ)] = [X, Y ] ⊗ p(λ)q(λ),

where X ⊗ p(λ), Y ⊗ q(λ) ∈ g̃pr. It is evident from the very definition that g̃pr is the graded
Lie algebra with the grading being defined by the degrees of the spectral parameter λ.

Let us introduce the structure of the quasigraded Lie algebra into the loop space g̃. In
order to do this we will deform Lie algebraic structure in loop algebras g̃ in the following way
[13–15]:

[X ⊗ p(λ), Y ⊗ q(λ)]F = [X, Y ] ⊗ p(λ)q(λ) − F(X, Y ) ⊗ λp(λ)q(λ), (4)

where X ⊗p(λ), Y ⊗ q(λ) ∈ g̃ and the map F : g× g → g is skew and satisfies the following
two requirements which are equivalent to the Jacobi identities:

(J1)
∑

c.p.{i,j,k}(F ([Xi,Xj ], Xk) + [F(Xi,Xj ),Xk]) = 0,

(J2)
∑

c.p.{i,j,k} F(F(Xi,Xj ),Xk) = 0.

Now we are interested in the possibility of defining the structure of the quasigraded
algebra on the space g̃pr. For this purpose, we want bracket (4) to be correctly restricted to the
space g̃pr. By the direct verification one can prove the following proposition.

Proposition 3.1. The subspace g̃pr ⊂ g̃ is the closed Lie algebra if and only if:

F(gi , gj ) ⊂ gi+j+1. (5)

In the next subsection, we will explicitly present examples of the cocycles F on the
finite-dimensional Lie algebras g that satisfies conditions (J1), (J2) and (5).
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3.2. Case of classical matrix Lie algebras

Let us now consider the classical matrix Lie algebras g of the type gl(n), so(n) and sp(n)

over the field K of the complex or real numbers. As in the examples above, we will realize
the algebra so(n) as algebra of skew-symmetric matrices: so(n) = {X ∈ gl(n)|X = −sX�s}
and algebra sp(n) as the following matrix Lie algebra: sp(n) = {X ∈ gl(2n)|X = wX�w},
where s ∈ symm(n), s2 = 1, w ∈ so(2n) and w2 = −1.

Let us consider the cochain F : g × g → g of the following explicit form:

FA(X, Y ) = [X, Y ]A ≡ XAY − YAX.

From the theory of consistent Poisson brackets it is known [19] to satisfy conditions (J1)
and (J2).

The following proposition holds true:

Proposition 3.2. The cochain FA satisfies condition (5) if and only if the matrix A has the
form:

(i) A = ∑n−1
i=1 aiXii+1 + anXn1 if g = gl(n),

(ii) A = ∑n−1
i=1 ai(Xi+1,i+2 + Xn+i+2,n+i+1) + an(X1+n,1 + X1,2n+1) + an+1(X2+n3 + X3+n2) if

g = so(2n + 1),
(iii) A = ∑n−1

i=1 ai(Xi,i+1 + Xn+i+1,n+i ) if g = sp(n),
(iv) A = ∑n−1

i=1 ai(Xi,i+1 + Xn+i+1,n+i ) + an(Xn,2n−1 + Xn−1,2n) + an+1(X1+n2 + X2+n1) if
g = so(2n),

where Xij is a standard matrix basis of gl(n), (Xij )αβ = δiαδγβ .

Proof. For the bracket constructed with the help of the cocycle FA to be correctly defined on
g̃pr we require that linear space g be closed with respect to the bracket [, ]A and linear space
g̃pr as a space of matrix-valued function of λ be closed with respect to the bracket (6). These
conditions are equivalent to the following requirement: [X, Y ]A ∈ gi+j+1∀X ∈ gi , Y ∈ gj .
Straightforward case-by-case verification shows that this requirement is satisfied if and only
if the matrix A has the form described in the proposition. �

Hence in the case of the matrix Lie algebras and the matrices A defined in the above
proposition we may introduce into the space g̃pr the new Lie bracket of the form:

[X ⊗ p(λ), Y ⊗ q(λ)] = [X, Y ] ⊗ p(λ)q(λ) − [X, Y ]A ⊗ λp(λ)q(λ), (6)

where X ⊗ p(λ), Y ⊗ q(λ) ∈ g̃pr, [X, Y ] ≡ XY − YX in the right-hand side of this identity
denote an ordinary Lie bracket in g and [X, Y ]A ≡ XAY − YAX.

Definition. We will denote the linear space g̃pr with the bracket given by (6) by g̃
pr
A .

From the very definition of g̃
pr
A it follows that the algebra g̃

pr
A is Z-quasigraded and g̃

pr
A

admits the direct sum decomposition g̃
pr
A = g̃

pr+
A + g̃

pr−
A , where

g̃
pr+
A =

⊕
j�0

gj ⊗ λj , g̃
pr−
A =

⊕
j<0

gj ⊗ λj . (7)

4. Dual space, Poisson bracket and algebra of integrals

In order to describe applications of the Lie algebras g̃
pr
A to the theory of finite-dimensional

integrable Hamiltonian systems, it is necessary to define the linear space
(̃
g

pr
A

)∗
, the

corresponding Lie–Poisson bracket and the Casimir functions of g̃
pr
A .
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4.1. Coadjoint representation and invariant functions of g̃
pr
A

In this subsection, we will construct the dual space, coadjoint representation and its invariants
for the case of the ‘principal’ quasigraded Lie algebras g̃

pr
A . If h is the Coxeter number then

from the properties of invariant form on simple Lie algebras it follows [4] that (gi , gj ) = 0 if

i + j �= 0 mod h. Hence we can define a pairing between g̃
pr
A and

(̃
g

pr
A

)∗
in the following way:

〈X,L〉 = resλ=0λ
−1 Tr(X(λ)L(λ)). (8)

From this definition it follows that the generic element L(λ) ∈ (̃
g

pr
A

)∗
has the form:

L(λ) =
∑
j∈Z

dimgj∑
α=1

l(j)
α X−j

α λ−j , (9)

where X
−j
α is a basis element of subspace g−j and l

(j)
α is a coordinate function on

(̃
g

pr
A

)∗
.

The following proposition holds true.

Proposition 4.1. Let L(λ) ∈ (̃
g

pr
A

)∗
be the generic element of the dual space. Then the

functions,

Im
k (L(λ)) = 1

m
resλ=0λ

−k−1 Tr(L(λ)A(λ)−1)m, (10)

are invariants of the coadjoint representation of the Lie algebra g̃
pr
A

Proof. It follows from the explicit form of the coadjoint action which has the following form:

ad∗
X(λ) ◦ L(λ) = A(λ)X(λ)L(λ) − L(λ)X(λ)A(λ), (11)

where A(λ) = (1 − λA),X(λ), Y (λ) ∈ g̃
pr
A , L(λ) ∈ (̃

g
pr
A

)∗
. �

Remark 1. Matrix A(λ)−1 ≡ (1 − λA)−1 in the above proposition has to be understood
as a power series in λ in the neighborhood of 0 or ∞: A(λ)−1 = (1 + Aλ + A2λ2 + · · ·) or
A(λ)−1 = −(A−1λ−1 + A−2λ−2 + · · ·).

4.2. Two Lie–Poisson brackets

Let us define Poisson structures in the space
(̃
g

pr
A

)∗
. Using pairing (8) described in the previous

section we can define the Lie–Poisson bracket on P
((̃

g
pr
A

)∗)
in the standard way:

{F1(L(λ)), F2(L(λ))} = 〈L(λ), [∇F1(L(λ)),∇F2(L(λ))]A(λ)〉, (12)

where ∇Fi(L(λ)) = ∑
j∈Z

∑dim gj

α=1
∂Fi

∂l
(j)
α

X
j
αλj and X

j
α is a basis element of subspace gj .

From proposition 4.1 and standard considerations follows the next corollary:

Corollary 4.1. Functions Im
k (L(λ)) are central (Casimir) functions for the Lie–Poisson

bracket (12).

Let us calculate Poisson bracket (12) explicitly. It is easy to show that for the coordinate
functions l(i)α , l

(j)

β , where l(i)α ∈ (gi )
∗, l

(j)

β ∈ (gj )
∗, this bracket will have the following form:{

l(i)α , l
(j)

β

} =
∑

γ

C
γ

α,β l(i+j)
γ −

∑
δ

Cδ
α,β(A)l

(i+j+1)

δ , (13)

where lγ and lδ are the coordinate functions on (gi+j )
∗ and (gi+j+1)

∗.
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Let us now introduce into the space
(̃
g

pr
A

)∗
a new Poisson bracket {, }0, which is a Lie–

Poisson bracket for the algebra
(̃
g

pr
A

)0
, where

(̃
g

pr
A

)0 = (̃
g

pr
A

)− � (̃
g

pr
A

)+
. Explicitly, this bracket

has the following form:{
l(i)α , l

(j)

β

}
0 = {

l(i)α , l
(j)

β

}
, i, j � 0,

{
l(i)α , l

(j)

β

}
0 = −{

l(i)α , l
(j)

β

}
, i, j < 0, (14){

l(i)α , l
(j)

β

}
0 = 0, j < 0, i � 0 or i < 0, j � 0. (15)

4.3. Finite-dimensional Poisson subspaces Mpr
s,p(A)

In order to obtain the finite-dimensional integrable systems in the framework of the above
construction one should be able to restrict the Poisson bracket { , }0 on some finite-dimensional
subspaces of

(̃
g

pr
A

)∗
.

Let the finite-dimensional subspace Mpr
s,p(A) ⊂ (̃

g
pr
A

)∗
, s, p � 0, be defined as follows:

Mpr
s,p(A) =

p−1∑
m=−s

(̃
gpr

m

)∗
.

The following proposition is true:

Proposition 4.2. Bracket { , }0 is correctly restricted to Mpr
s,p(A).

Proof. It follows from the fact that the subspaces
(
J pr

p,s

)∗ = ∑−s−1
m=−∞

(̃
g

pr
m

)∗
+

∑∞
m=p

(̃
g

pr
m

)∗

are ideals in the Poisson algebra defined by the bracket {, }0 and restriction of the bracket { , }0

on Mpr
s,p(A) is equivalent to factorization of Poisson algebras over these ideals. �

The Lax operator L(λ) in the subspace Mpr
s,p(A) has the form:

L(λ) =
p−1∑
j=−s

L(j)λ−j =
p−1∑
j=−s

dimg−j∑
α=1

l(j)
α λ−jX−j

α .

where L(k) ∈ g−k . The Lie–Poisson bracket on Mpr
s,p(A) is written as follows:{

l(n)
α , l

(m)
β

}
0 =

∑
γ

C
γ

α,β l(n+m)
γ −

∑
δ

Cδ
α,β(A)l

(n+m+1)
δ , when n,m � 0, n + m + 1 < p,

{
l(n)
α , l

(m)
β

}
0 = −

∑
γ

C
γ

α,β l(n+m)
γ +

∑
δ

Cδ
α,β(A)l

(n+m+1)
δ , when n,m < 0, n + m + 1 > −s,

{
l(n)
α , l

(m)
β

}
0 = 0 in other cases.

4.4. ‘Deformed’ Lax equations

Let us now consider Hamiltonian equations on the Poisson subspace Mpr
s,p(A). Let

L(λ) ∈ Mpr
s,p(A) and H(L(λ)) be the restriction of some function H on

(
g

pr
A

)∗
onto Mpr

s,p(A).
We can write the corresponding Hamiltonian equations of motion in the form:

dl
(j)
α (λ)

dt
= {

l(j)
α (λ),H(L(λ))

}
0, (16)

where α ∈ 1, dimgj .
The following theorem holds true:

Theorem 4.1. Let the Hamiltonian H be an invariant of the coadjoint representation of the
Lie algebra g̃

pr
A . Then
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(i) equations (16) can be written in the form of the ‘deformed’ Lax equations:

dL(λ)

dt
= A(λ)M±(λ)L(λ) − L(λ)M±(λ)A(λ), (17)

where L(λ) ∈ Mpr
s,p(A), M±(λ) = ∓(P±∇H)|L(λ)∈Mpr

s,p(A), P± are the projection

operators on the subalgebra
(̃
g

pr
A

)±
,∇H = ∑

j∈Z

∑dimgj

α=1
∂H

∂l
(j)
α

X
j
α .

(ii) The polynomial functions
{
I r
n (L(λ))

}
, where L(λ) ∈ Mpr

s,p(A) constitute commutative
(with respect to the restriction of the bracket {, }0 on Mpr

s,p(A)) algebra of integrals of the
‘deformed’ Lax equations (17).

Idea of the Proof. Item (i) of the theorem follows from the Kostant–Adler–Symes scheme [5]
and explicit form of the coadjoint action of g̃

pr
A (11). Item (ii) of the theorem follows from the

Kostant–Adler–Symes scheme and the fact that projection onto the quotient space Mpr
s,p(A) is

a canonical homomorphism.

Remark 2. Note that the restriction of the Hamiltonian H onto the finite-dimensional subspace
Mpr

s,p(A) in the definition of the M-operator is made after the matrix gradient of H was taken.

Remark 3. It is possible to transform ‘deformed’ Lax equations (17) to the form of the usual
Lax equations using other realizations of g̃

pr
A and

(̃
g

pr
A

)∗
. The form of the L − M pairs in the

last case will be more complicated. That is why we consider the realization of g̃
pr
A presented

in this paper to be the most convenient.

Now let us consider explicit form of the integrals I r
n on the general finite-dimensional

subspace Ms,p(A). Calculating these Hamiltonians, we will decompose A−1(λ) in the power
series in the neighbourhood of zero:

I r(λ) ≡ 1/r tr(L(λ)(1 + Aλ + A2λ2 + · · ·))r ≡
∞∑

n=−rp

I r
nλn. (18)

It is not difficult to obtain the following formulae for the integrals I r
n :

I r
n = 1/r

k1+···+kr=n−(m1+···+mr)∑
k1,k2,...,kr=0

s−1∑
m1,m2,...,mr=−p

tr(L(−m1)Ak1L(−m2)Ak2 · · · L(−mr)Akr ). (19)

Standard considerations show that these integrals are not identically equal to zero only in the
case when n is proportional to the Coxeter number of g. They generate Hamiltonian flows
that, due to the results of the previous section, can be written in the Lax-type form with either
of the following M-operators:

Mr±
k = ∓P±(λ−k((1 + Aλ + A2λ2 + · · ·)L(λ))r−1(1 + Aλ + A2λ2 + · · ·)). (20)

Remark 4. Note that as in classical ‘non-deformed’ case ([5]), we have two M-operators,
M+ and M−, for the same Hamiltonian and Lax equations. Nevertheless, because of the
multipliers (1 + Aλ + A2λ2 + · · ·) in their definition, only one of these operators has form
simple enough for the usage.
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5. ‘Magnetic’ deformation of the Toda chains

5.1. Poisson structure of the quotient space Mpr
1,2(A)

Let us discuss the Poisson structure in the quotient spaces Mpr
1,2(A). Note that it is

possible to consider the spaces Mpr
1,0(A) and Mpr

0,2(A) separately due to the fact that
Mpr

1,2(A) = Mpr
1,0(A) � Mpr

0,2(A) both as linear and as a Poisson space.
The generic element of the space Mpr

1,2(A) has the following form:

L(λ) = λL(−1) + L(0) + λ−1L(1),

where

L(0) =
n∑

i=1

l
(0)
i Hi, L(−1) =

∑
αi∈�

⋃ −�

l
(−1)
i Eαi

, L(1) =
∑

αi∈�
⋃ −�

l
(1)
i E−αi

.

(1) Let us at first consider the space Mpr
0,2(A). It coincides with (g0 + g1)

∗ as a linear space.
Its generic element has the form: L(0) + λ−1L(1). The corresponding commutation relations
are as follows: {

l(0)
α , l

(0)
β

}
0 =

∑
δ

Cδ
α,β l

(0)
δ −

∑
δ

Cδ
α,β(A)l

(1)
δ , (21a)

{
l(0)
α , l

(1)
β

}
0 =

∑
δ

Cδ
α,β l

(1)
δ , (21b){

l(1)
α , l

(1)
β

}
0 = 0. (21c)

Let us show that these brackets are equivalent to the canonical Poisson brackets.
By the direct calculations one can prove the following proposition:

Proposition 5.1. Let matrices P and Q be defined as follows: P = (L(0) + 1/2(L(1)A +
AL(1))),Q = L(1). Then P = ∑rkg

k=1 pkHk,Q = ∑
αk∈�

⋃ −� eαi (q)E−αk
, where q =∑rkg

k=1 qkHk and brackets among pi and qi are canonical:

{pi, pi}0 = 0, {pi, qj }0 = δij , {qi, qj }0 = 0. (22)

(2) Let us now consider the space Mpr
1,0(A). It coincides with (gA)∗

0
both as the linear and

the Poisson space. Its generic element has the form: λL(−1). Corresponding commutation
relations are as follows:{

l(−1)
α , l

(−1)
β

}
0 = −

∑
δ

Cδ
α,β(A)l

(−1)
δ .

It turns out that this bracket is almost always trivial. The following proposition holds true.

Proposition 5.2. Let the deformation matrix A has the form described in proposition 3.2.
Then,

1. (gA)0 is Abelian for the all values of the parameters ai if g = gl(n), sp(n).
2. (gA)0 is Abelian if a1 = an+1 = 0 and g = so(2n + 1).
3. (gA)0 is Abelian if a1 = an+1 = an = an−1 = 0 for g = so(2n).
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Remark 5. Under the conditions of the above proposition the Abelian subspace Mpr
1,0(A)

becomes the centre of Mpr
1,2(A), i.e. the coordinates of the subspace Mpr

1,0(A) may be put
equal to constants. Let us also note that the centre of Mpr

1,2(A) may be made nontrivial even
if the conditions of the above proposition are not satisfied, but Mpr

1,0(A) is factorized over
some ideal (this is equivalent to putting of some of the coordinate functions on Mpr

1,0(A) to be
equal to zero) such that the corresponding quotient is again the Abelian. We will consider this
procedure in details in the next subsections for each classical matrix Lie algebra.

5.2. Hamiltonian and Lax pair of the deformed Toda chain

In this subsection, we obtain the integrable deformation of the standard Toda chains. It
coincides with the integrable Hamiltonian system described in theorem 4.1 for the case of the
Poisson space Mpr

1,2(A). We calculate the Hamiltonian and the corresponding Lax pair for the
deformed Toda chain explicitly.

(1) Let us consider the set of mutually commuting integrals I r(L(λ)) described in the
previous sections with L(λ) ∈ Mpr

1,2(A). We will be especially interested in the second-order
integrals I 2(L(λ)) which we will call the ‘Hamiltonians’. The simplest function of this set is

I 2
0 (L(λ)) = 1

2 resλ=0λ
−1I 2

0 (L(λ)).

A direct calculation gives:

I 2
0 (L(λ)) = 1

2 Tr(L(0) + (AL(1) + L(1)A))2 − 1
2 Tr(AL(1))2 + Tr L(1)L(−1).

As it follows from the results of the previous section a replacement of variables L(0) ≡
(P + 1/2(QA + AQ)), L(1) ≡ Q,L(−1) ≡ C, where

P =
rkg∑
k=1

pkHk, Q =
∑

αk∈�
⋃ −�

eαk(q)E−αk
, C =

∑
αk∈�

⋃−�

ckEαk

transforms the bracket on Mpr
0,2(A) to the canonical form. In such coordinates the Hamiltonian

H ≡ I 2
0 (L(λ)) acquires the following form:

H = 1
2 Tr

(
P + 1

2 (AQ + QA)
)2 − 1

2 Tr(AQ)2 + Tr QC, (23)

By a direct calculation it is easy to show that this Hamiltonian has for all the classical matrix
Lie algebras the form:

H = 1

2

rkg∑
i=1

pi +
∑

αj ∈�
⋃ −�

βA
i,j eαj (q)

2

− 1

2

∑
αj ,αi∈�

⋃ −�

γ A
i,j eαi (q) eαj (q) +

∑
αi∈�

⋃−�

ci eαi (q),

(24)

where � is a system of simple roots of g, � is the longest root, βA
i,j and γ A

i,j are the
functions in the matrix elements of the ‘deformation’ matrix A of the first- and second-
order, respectively. We will call this Hamiltonian to be the integrable magnetic deformation
of the Toda Hamiltonian, and the corresponding dynamical system—the integrable magnetic
deformation of the Toda chain. In the A = 0 case, it coincides with the ordinary Toda chain.

(2) As it follows from theorem 4.1 the generic element of the space Mpr
1,2(A):

L(λ) = λL(−1) + L(0) + λ−1L(1),

where L(0) = (P − 1/2(AQ + QA)), L(1) = Q,L(−1) = C coincide with the Lax operator
for the Lax pair of the ‘deformed’ Lax equations:

dL(λ)

dt
= A(λ)M(λ)L(λ) − L(λ)M(λ)A(λ).
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Let us now consider the M-operator that corresponds to H ≡ I 2
0 . Using formula (20), we

obtain the following simple expression:

M(λ) ≡ M2−
0 (λ) = λ−1L(1) ≡ λ−1Q.

The second candidate for the role of the M-operator, namely M2+
0 has complicated form, is

useless for practical applications and we will not consider it here.
The ‘deformed’ Lax equations corresponding to the Hamiltonian I 2+

0 are written as
follows:

dL(1)

dt
= [L(1), L(0)] − (A(L(1))2 − (L(1))2A), (25a)

dL(0)

dt
= [L(1), L(−1)] − (AL(1)L(0) − L(0)L(1)A), (25b)

Remark 6. There is one more equation that follows from the ‘deformed’ Lax equations
namely

dL(−1)

dt
= −(AL(1)L(−1) − L(−1)L(1)A).

But, using the fact that for the chosen matrices A we have [g−1, g−1]A = 0. It is easy to prove
that dL(−1)

dt
= 0, i.e. that L(−1) is indeed a constant matrix and the last equation is satisfied

automatically.

Now, in order to obtain the Hamiltonians described in this subsection in a more explicit
form, we will consider the cases of all the classical matrix Lie algebras separately.

5.3. Case g = gl(n)

In this case we have that the generic element of the space Mpr
1,2(A) is written as follows:

L(λ) = λ

(
n−1∑
i=1

l
(−1)
i Xii+1 + l(−1)

n Xn1

)
+

(
n∑

i=1

l
(0)
i Xii

)
+ λ−1

(
n−1∑
i=1

l
(1)
i Xi+1i + l(1)

n X1n

)
;

and A = ∑n−1
i=1 aiXii+1 + anXn1. The Poisson bracket among the coordinate functions has the

form:{
l
(0)
i , l

(0)
j

}
0 = −(

δji+1ail
(1)
ii+1 − δji−1aj l

(1)
jj+1

)
,

{
l
(0)
i , l

(1)
j

}
0 = (δij − δij+1)l

(1)
j ,{

l
(1)
i , l

(1)
j

}
0 = 0,

{
l
(−1)
i , l

(−1)
j

}
0 = {

l
(−1)
i , l

(0)
j

}
0 = {

l
(−1)
i , l

(1)
j

}
0 = 0.

We see that in this case the coordinate functions l
(−1)
i are, indeed, central and we may put them

to be equal to constants: l
(−1)
i ≡ ci . Making the following replacement of variables:

l
(1)
i = eqi−qi+1 , l

(0)
i = pi − 1

2 (ai eqi−qi+1 + ai−1 eqi−1−qi ),

where n + 1 ≡ 1 and we obtain canonical bracket for the coordinates pi, qj :

{pi, qj }0 = δij , {pi, pj }0 = {qi, qj }0 = 0.

In these canonical coordinates the Hamiltonian (23) acquires the following explicit form:

H = 1

2

n∑
i=1

(
pi +

1

2
(ai eqi−qi+1 + ai−1 eqi−1−qi )

)2

− 1

2

n∑
i=1

a2
i e2(qi−qi+1) +

n∑
i=1

ci eqi−qi+1 . (26)
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This Hamiltonian is an integrable ‘magnetic’ deformation of the Hamiltonian of the closed
Toda chain. If we put cn = an = 0, we obtain the magnetic deformation of the Hamiltonian
of the open Toda chain.

The simplest integral that commutes with the H function is I 1
0 . Direct calculation shows

that it coincides with the total momentum I 1
0 = ∑n

i=1 pi . Preservation of the total momentum
follows also from the fact that the Hamiltonian depends on the difference of the coordinates
qi − qi+1.

5.4. Case g = so(2n)

In this case, we have the generic element of the space Mpr
1,2(A) and also have the form

L(λ) = λL(−1) + L(0) + λ−1L(1),

where

L(0) =
n∑

i=1

l
(0)
i (Xii − Xi+ni+n),

L(−1) =
n−1∑
i=1

l
(−1)
i (Xii+1 − Xi+n+1i+n) + l(−1)

n (Xn2n−1 − Xn−12n) + l
(−1)
n+1 (Xn+12 − Xn+21),

L(1) =
(

n−1∑
i=1

l
(1)
i (Xi+1i − Xi+ni+n+1) + l(1)

n (X2n−1n − X2nn−1) + l
(1)
n+1(X2n+1 − X1n+2)

)
.

The Poisson bracket among the coordinate functions is written as follows:{
l
(0)
i , l

(0)
j

}
0 = −(

δji+1ail
(1)
ii+1 − δji−1aj l

(1)
jj+1

)
+ an(δinδjn−1 − δin−1δjn)l

(1)
n

+ an+1(δi1δj2 − δi2δj1)l
(1)
n+1,{

l
(0)
i , l

(1)
j

}
0 = (δij − δij+1)l

(1)
j ,

{
l
(0)
i , l(1)

n

}
0 = (δin + δin−1)l

(1)
n ,{

l
(0)
i , l

(1)
n+1

}
0 = −(δi2 + δi1)l

(1)
n+1,

{
l
(1)
i , l

(1)
j

}
0 = 0,{

l
(−1)
i , l

(−1)
j

}
0 = (δjnδin−1 − δin−1δjn)

(
an−1l

(−1)
n − anl

(−1)
n−1

)
+ (δjn+1δi1 − δin+1δj1)

(
a1l

(−1)
n+1 − an+1l

(−1)
1

){
l
(−1)
i , l

(0)
j

}
0 = {

l
(−1)
i , l

(1)
j

}
0 = 0.

It follows from this that the variables l
(−1)
i are central and could be put equal to constants if and

only if a1l
(−1)
n+1 = a1l

(−1)
n+1 = an−1l

(−1)
n = anl

(−1)
n−1 = 0. Let us hereafter take such a matrix A and

‘shift-matrix’ L(−1) that this condition is satisfied. In this case we put l
(−1)
i ≡ ci and taking

into account the explicit form of simple roots for so(2n), introduce the described standard
variables in subsection 5.1:

l
(1)
i = eqi−qi+1 , i = 1, n − 1, l(1)

n = eqn+qn−1 , l
(1)
n+1 = e−(q1+q2),

l
(0)
i = pi − 1

2 (ai eqi−qi+1 + ai−1 eqi−1−qi ), i = 3, n − 2,

l
(0)
1 = p1 − 1

2 (a1 eq1−q2 − an+1 e−(q1+q2)),

l
(0)
2 = p2 − 1

2 (a2 eq2−q3 + a1 eq1−q2 + an+1 e−(q1+q2)),

l
(0)
n−1 = pn−1 − 1

2 (an−1 eqn−1−qn + an−2 eqn−2−qn−3 + an eqn+qn−1),

l(0)
n = pn − 1

2 (an−1 eqn−1−qn + an eqn+qn−1).



Integrable deformation of the Toda chain 9677

The corresponding Hamiltonian (23) acquires the following explicit form:

2H =
(

p1 +
1

2
(a1 eq1−q2 − an+1 e−(q1+q2))

)2

+

(
p2 +

1

2
(a2 eq2−q3 + a1 eq1−q2 + an+1 e−(q1+q2))

)2

+
n−2∑
i=3

(
pi +

1

2
(ai eqi−qi+1 + ai−1 eqi−1−qi )

)2

+

(
pn−1 +

1

2
(an−1 eqn−1−qn + an−2 eqn−2−qn−3 + an eqn+qn−1)

)2

+

(
pn +

1

2
(an−1 eqn−1−qn + an eqn+qn−1)

)2

− 2

( n−1∑
i=1

a2
i e2(qi−qi+1) + a2

n e2(qn+qn−1)

+ a2
n+1 e−2(q1+q2) + anan−1 e2qn−1 + 2a1an+1 e−2q1

)
+ 4

(
n−1∑
i=1

ci eqi−qi+1 + cn eqn+qn−1 + cn+1 e−(q1+q2)

)
.

5.5. Case g = so(2n + 1)

Let us now consider the case when the underlying Lie algebra is so(2n + 1). In this case we
have that generic element of the space Mpr

1,2(A) is

L(λ) = λL(−1) + L(0) + λ−1L(1),

where

L(0) =
n∑

i=1

l
(0)
i (Xi+1i+1 − Xi+n+1i+n+1),

L(−1) =
n−1∑
i=1

l
(−1)
i (Xi+1i+2 − Xi+n+2i+n+1) + l(−1)

n (Xn+11 − X12n+1) + l
(−1)
n+1 (Xn+23 − Xn+32),

L(1) =
n−1∑
i=1

l
(1)
i (Xi+2i+1 − Xi+n+1i+n+2) + l(1)

n (X1n+1 − X2n+11) + l
(1)
n+1(X3n+2 − X2n+3).

The Poisson bracket among the coordinate functions are written as follows:{
l
(0)
i , l

(0)
j

}
0 = −(

δji+1ail
(1)
ii+1 − δji−1aj l

(1)
jj+1

)
+ an+1(δi1δj2 − δi2δj1)l

(1)
n+1,{

l
(0)
i , l

(1)
j

}
0 = (δij − δij+1)l

(1)
j ,

{
l
(0)
i , l(1)

n

}
0 = δinl

(1)
n ,{

l
(0)
i , l

(1)
n+1

}
0 = −(δi2 + δi1)l

(1)
n+1

{
l
(1)
i , l

(1)
j

}
0 = 0,{

l
(−1)
i , l

(−1)
j

}
0 = (δjn+1di1 − δin+1dj1)

(
a1l

(−1)
n+1 − an+1l

(−1)
1

){
l
(−1)
i , l

(0)
j

}
0 = {

l
(−1)
i , l

(1)
j

}
0 = 0.

It follows from this that variables l
(−1)
i are central and could be put equal to constants if and

only if a1l
(−1)
n+1 = a1l

(−1)
n+1 = 0. Let us hereafter take such a matrix A and such a ‘shift-matrix’
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L(−1) that this condition is satisfied. In this case we put l
(−1)
i ≡ ci and taking into account the

explicit form of simple roots for so(2n + 1), introduce the described change of variables in
subsection 5.1:

l
(1)
i = eqi−qi+1 , i = 1, n, l(1)

n = eqn , l
(1)
n+1 = e−(q1+q2),

l
(0)
i = pi − 1

2 (ai eqi−qi+1 + ai−1 eqi−1−qi ), i = 3, n − 1,

l
(0)
1 = p1 − 1

2 (a1 eq1−q2 − an+1 e−(q1+q2)),

l
(0)
2 = p2 − 1

2 (a2 eq2−q3 + a1 eq1−q2 + an+1 e−(q1+q2)),

l(0)
n = pn − 1

2 (an−1 eqn−1−qn + an eqn).

The corresponding Hamiltonian (23) has the following explicit form:

2H =
(
p1 +

1

2
(a1 eq1−q2 − an+1 e−(q1+q2))

)2

+

(
p2 +

1

2
(a2 eq2−q3 + a1 eq1−q2 + an+1 e−(q1+q2))

)2

+
n−1∑
i=3

(
pi +

1

2
(ai eqi−qi+1 + ai−1 eqi−1−qi )

)2

+

(
pn +

1

2
(an−1 eqn−1−qn + an eqn)

)2

− 2

(
n−1∑
i=1

a2
i e2(qi−qi+1) + a2

n e2(qn+qn−1) + a2
n+1 e−2(q1+q2) + 2a1an+1 e−2q1

)

+ 4

(
n−1∑
i=1

ci eqi−qi+1 + cn eqn + cn+1 e−(q1+q2)

)
.

5.6. Case g = sp(n)

Let us now consider the case when the underlying Lie algebra is sp(n). This is in a certain
sense the most simple case because deformation matrix A has the most simple form for sp(n)

with an = an+1 = 0. The generic element of the space Mpr
1,2(A) is written as follows:

L(λ) = λL(−1) + L(0) + λ−1L(1),

where

L(0) =
n∑

i=1

l
(0)
i (Xii − Xi+ni+n),

L(−1) =
n−1∑
i=1

l
(−1)
i (Xii+1 − Xi+n+1i+n) + l(−1)

n Xn2n + l
(−1)
n+1 Xn+11

L(1) =
n−1∑
i=1

l
(1)
i (Xi+1i − Xi+ni+n+1) + l(1)

n X2nn + l
(1)
n+1X1n+1.

The Poisson bracket among the coordinate functions has the form:{
l
(0)
i , l

(0)
j

}
0 = −(

δji+1ail
(1)
ii+1 − δji−1aj l

(1)
jj+1

)
,

{
l
(0)
i , l

(1)
j

}
0 = (δij − δij+1)l

(1)
j ,{

l
(0)
i , l(1)

n

}
0 = 2δinl

(1)
n ,

{
l
(0)
i , l

(1)
n+1

}
0 = −2δi1l

(1)
n+1,

{
l
(1)
i , l

(1)
j

}
0 = 0,{

l
(−1)
i , l

(−1)
j

}
0 = {

l
(−1)
i , l

(0)
j

}
0 = {

l
(−1)
i , l

(1)
j

}
0 = 0.

It follows from this that the variables l
(−1)
i are central for this bracket. Hence, we may put

l
(−1)
i ≡ ci and introduce the described change of variables in the subsection 5.1:
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l
(1)
i = eqi−qi+1 , i = 1, n − 1, l(1)

n = e2qn , l
(1)
n+1 = e−2q1 ,

l
(0)
i = pi − 1

2 (ai eqi−qi+1 + ai−1 eqi−1−qi ), i = 2, n − 1,

l
(0)
1 = p1 − 1

2a1 eq1−q2 , l(0)
n = pn − 1

2an−1 eqn−1−qn .

The corresponding Hamiltonian (23) acquires the following explicit form:

H = 1

2

(
p1 +

1

2
a1 eq1−q2

)2

+
1

2

n−1∑
i=2

(
pi +

1

2
(ai eqi−qi+1 + ai−1 eqi−1−qi )

)2

+
1

2

(
pn +

1

2
an−1 eqn−1−qn

)2

−
n−1∑
i=1

a2
i e2(qi−qi+1) + 2

(
n−1∑
i=1

ci eqi−qi+1 + cn e2qn + cn+1 e−2q1

)
.

5.7. Few remarks on the spectral curve

At the end of the paper we want to make several comments on the spectral curve for all of the
integrable systems described in this paper. We will show how to modify the usual definition
of a spectral curve in our ‘deformed’ situation.

The following proposition holds true:

Proposition 5.3. Let L(λ) ∈ Mpr
s,p(A) satisfies the ‘deformed’ Lax equations (17). Then the

spectral curve for the ‘deformed’ Lax equations (17) coincide with the following curve:

Rs,p(λ, µ) ≡ det (L(λ) − µA(λ)) = 0. (27)

Proof. Presenting the curve Rs,p(λ, µ) in the form: Rs,p(λ, µ) = det A(λ) det (A−1(λ)

L(λ) − µ1) = 0, we see that its coefficients are proportional to the coefficients of the
characteristic polynomial of the matrix A−1(λ)L(λ). On the other hand, due to the Newton’s
identities they are independent functions of the conservative quantities of ‘deformed’ Lax
equations (17) —integrals I k

n (L(λ)). That proves the proposition. �

Remark 7. Note that the algebraic curve Rs,p differs from the one that could be obtained with
the help of the Kostant–Adler–Symes scheme and ordinary loop algebras [5]. In particular,
the curve Rs,p is not hyperelliptic.
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